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IDENTIFICATION OF REAR MODEL OF TV3-117 AIRCRAFT ENGINE BASED ON
THE BASIS OF NEURO-MULTI-FUNCTIONAL TECHNOLOGIES

The subject matter in the article is TV3-117 aircraft engine and methods of identification of its technical condition. The goal of the
work is to develop methods for identifying the technical state of the aircraft engine TV3-117 on the basis of real-time neural network
technologies. The following tasks were solved in the article: the task of identifying the reverse multi-mode model of the aircraft
engine TV3-117 using neural networks. The following methods used are — methods of probability theory and mathematical statistics,
methods of neuroinformatics, methods of the theory of information systems and data processing. The following results were obtained
— The application of the neural network apparatus is effective in solving a large range of tasks: identifying the mathematical model of
the aircraft engine TV3-117, diagnosing the condition, analyzing the trends, forecasting the parameters, etc., despite the fact that these
tasks usually relate to the class difficultly formalized (poorly structured), neural networks are adequate and effective in the process of
their solution. In the process of solving the task of identifying the mathematical model of the aircraft engine TV3-117 on the basis of
neural networks, it was established that neural networks solve the problem of identification more precisely classical methods.
Conclusions: It was established that the error of identification of the aircraft engine TV3-117 with the help of a neural network of
type perceptron did not exceed 1.8 %; For the neural network of radial-basic function (RBF) — 4.6 %, whereas for the classical method
(LSM) it makes about 5.7 % in the considered range of changes in engine operation modes. It was found that neural network methods
are more robust to external perturbations: for noise level 6 = 0.01, the error of identification of aircraft engine TV3-117 with the use
of perceptron has increased from 1.8 to 3.8 %; for the neural network RBF — from 4.6 to 5.7 %, and for the least squares method —
from 5.7 to 13.93 %. In the process of solving the task of identifying the inverse multi-mode model of the aviation engine TV3-117 on
its parameters on the basis of neural networks (perceptron and RBF) it was shown that their use allows for indirect measurement of
the parameters of the flowing part of the engine at different modes of its operation: in the absence of noise — with an error of not more
than 1,8 and 4,6 % respectively; in the presence of noise (¢ = 0,01) — with an error of not more than 3,8 and 5,7 % respectively.
Application in these conditions of the least squares method (polynomial regression model of the 8th order) allows us to obtain the

error value: in the absence of noise — no more than 5,7 %; in the presence of noise — no more than 13,93 %.
Keywords: aircraft engine; neural network; perceptron; radial-basic function, identification.

Introduction

The aircraft engine TV3-117 as a recoverable object
during its lifetime requires continuous monitoring and
diagnostics of its technical condition, the complexity of
which depends on the level of automation of the processes
of  receiving, processing, storing, documenting
information on the current state of the aircraft engine, as
well as monitoring, diagnosis, forecasting of its the
technical state, the sequence and methods of execution of
which determine the information system of control and
diagnostics.

The means of their implementation are distributed
monitoring and diagnostics systems, which are tasked
with determining the degree of conformity of the research
object with the requirements, that is, control of its
technical condition.

Distributed monitoring and diagnostics system is a
logical addition to the information monitoring and
diagnostic system, since it together with the latter carries
out an analysis of the actual technical state of the engine:
forecasting the residual resource, monitoring the
degradation of the performance of the aircraft engine,
determines the program of repair and restoration works,
etc.

At the same time, despite the considerable amount of
research in these areas, the information systems for
monitoring and diagnosing the technical state of aviation
engines are not perfect for a number of reasons, the main
ones being, on the one hand, the dissociation of the
databases of testing, control and diagnostics, the lack of
intelligent components, which allow qualitatively and
efficiently to support decision-making [1] and, as a

consequence, reduce the total time spent on engine
maintenance; on the other hand, the unsteadiness of
physical processes in an aircraft engine, the complexity of
its mathematical description, the dependence of engine
technical characteristics on external operating conditions,
the  limited  composition of the  measured
thermogasdynamic parameters of the engine, their
technological spread, etc. These factors lead to the need to
make decisions about the technical state engine in
conditions of significant uncertainty.

Analysis of works in the field of control and
diagnostics of the state of aviation engines on the basis of
neural networks [2—6] shows that at present, such works
are being conducted, however, due to a number of reasons
(secrecy, narrow specialization of the tasks to be solved),
in most publications there are no engineering methods, as
well as theoretical and practical recommendations for
solving similar problems. The task of the problem and
possible algorithms for choosing the architecture of neural
networks, their algorithms, evaluation of their work
efficiency, etc. are studied, as well as the engineering
methodology for solving the problem of classification of
operating modes of aircraft engine TV3-117 using neural
network technologies.

Analysis of existing methods for identifying the
technical condition of aviation engines

Professor Zhernakov S.V. is currently actively
engaged in the task of identifying the technical state of
aviation gas turbine engines (GTE) using neural network
technologies. (Ufa State Aviation Technical University),
in whose work the necessary techniques have been
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developed and the following tasks are successfully solved:
identification of characteristics of the GTE; identification
of the inverse multimode model of the GTE according to
the parameters of its oil system; identification of the
multi-mode dynamic model of the GTE [7-10]. The
solution to these problems was obtained both in bench test
conditions and in the flight operation of the aircraft.
However, the results obtained are applicable only to
turbojet engines installed on aircraft.

It is known that helicopters in most of their cases use
turboshaft engines, the number of which includes the
engine TV3-117, the structure and running processes,
which differ from the structure and processes occurring
inside turbojet engines. Therefore, it is necessary to
modify (refine) previously developed methods for solving
the tasks of identifying the technical state of aviation
engines using neural network technologies, which will
allow them to be used for monitoring and diagnostics of
turbocharged engines, including the engine TV3-117.
Therefore, the scientific and practical tasks solved in this
work are relevant.

Problem formulation

It is assumed that aircraft engine TV3-117 as a
nonlinear control object on steady operating modes is
described using the equations of the form:

vectors of engine parameters; X — vector of engine state
variable [11].

In practice, the task of indirect measurements is
relevant: by observing the vector of the output
thermogasdynamic parameters of the engine, determine
the values of its control influences (that is, components of
the vector U). For example, according to the measured

value of parameters n, T, P, it is necessary to calculate

the value of fuel consumption in the combustion chamber
G, . Analytical statement of this problem is reduced to the

definition of inverse nonlinear dependence f™ in the
expression:

U=f*(AY); (3)

where Y — vector of engine output coordinates [11].

Thus, the goal of the work is to develop methods for
identifying the technical state of the aircraft engine
TV3-117 on the basis of real-time neural network
technologies, while it is necessary to determine its
structure and parameters, which ensures a minimum error
of learning E based on the procedure presented in fig. 1,

where s:(gl,gz,...,gk )T — the vector of inconsistencies

between the actual and estimated by means of
the neural network of the values of control

influences, that is s=U-U", and E=) g . After

f,(AU)=0; (1) training, the neural network reproduces the characteristics
) 5 of the reverse  multi-mode  aircraft  engine
Y =f,(AX); @ model TV3-117.
where f, and f, — nonlinear vector-function; A and U —
U | Aircraftengine | v Neural U’ £ 3 g E._
TV3-117 network o -
Fig. 1. Scheme of the solution of the problem of identification of the return multi-mode model of the aircraft engine TV3-117
The solution of the identification problem of the the following engine parameters are reduced

reverse multi-mode model of the aircraft engine TV3-117
on the basis of neural network technologies will be based
on the following steps of the proposed method:

1. Data analysis;

2. Pre-processing of data;

3. Selection of the architecture of the neural network;

4. Selection of the neural network structure;

5. Choosing the algorithm for training the neural
network;

6. Evaluating effectiveness.

Development of the neural network: the choice of
architecture, structure, learning algorithm

The inverse problem of identifying a multi-mode
aircraft engine model TV3-117 is as follows: the values of

to standard atmospheric conditions (table 1). It is
necessary to construct a multi-mode neural network
mathematical model for the calculation (indirect
measurement) of the wvalue of the reduced fuel
consumption.

Data for table 1 entered in accordance with the
provisions [7] that the set of steady-state operating
modes of the aircraft engine TV3-117 s
described by a combination of functional dependencies on
the values of the following engine parameters:
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pressure (kPa) and temperature (K) are -calculated

where GTsp — specific value of fuel consumption (kg/s);

S|

n,, — specific value of the rotor frequency of the turbine

compressor (%); G — specific value of the air

ail’sp

consumption (kg/s); Pz’;p and T;Sp — respectively, the

for the turbine compressor; T;sp — specific value of the

gases temperature behind the compressor turbine (K);
R,, — specific value of the engine thrust is shown.

Table 1. Fragment of the training sample for identification of multi-mode model of aircraft engine TV3-117

T Nsp air,, stp TzSp Tssp Ry
0.188 0.533 0.413 0.323 0.439 0.513 0.148
0.126 0.343 0.247 0.199 0.249 0.471 0.051
0.198 0.543 0.422 0.331 0.446 0.519 0.156
0.475 0.793 0.752 0.638 0.804 0.753 0.495
0.145 0.403 0.299 0.238 0.294 0.463 0.076
0.348 0.707 0.614 0.501 0.663 0.667 0.331
0.239 0.582 0.464 0.366 0.475 0.547 0.189
0.728 0.901 0.923 0.849 0.925 0.854 0.769
1.011 1.009 1.031 1.038 1.050 1.014 1.051
0.136 0.374 0.274 0.219 0.271 0.465 0.065
0.148 0.409 0.306 0.243 0.299 0.465 0.084
0.557 0.832 0.821 0.714 0.866 0.788 0.590
0.188 0.533 0.413 0.323 0.439 0.513 0.148

The process of transition from the physical
parameters of the engine to the given values (and back),
carried out using the neural network model of the aircraft

using the operator F (e) by the formulas of the gas-
dynamic similarity:

engine TV3-117, shown in fig. 2, where the conversion of 288 G. .760 [288 . . 760
the measured (physical) parameters of the engine to the N, =N, |—; Gairsp = = stp =P, '??
reduced, which correspond to the standard atmospheric Ty Ry Ty N
conditions T, = 288,15 K, P;= 760 mm Hg is carried out . . 288 _. . 288 760
: ' " . . Tzsp =T, —; Tssp =T, —; Ry, =R-—; (5)

with the help of the operator F (), which is described by Ty Ty P
the expressions (1) and (2), and the inverse transition —

R N

G, G, Y Y
» Neural o 1
F(.) " network F (')

Fig. 2. The scheme of transition from the neural network model of the aircraft engine TB3-117 in the given parameters to the model in

physical quantities

and the influence of flight conditions on the parameters of
the air entering the engine is thus considered as:

k
. k-1 —1g2 |
T =T, (1+TM2): P} = Py (1+leM2jk 5 (6)

where T, and P, — respectively, the temperature (K) and
pressure (mm Hg) air at a given flight altitude;
T, and B, — are inhibited values of these parameters at a
given altitude; k — adiabatic index; M — the number of flaps
the flight; o, — recovery rate of full pressure in the air
intake.

The analysis of the initial data (training sample) and
the process of their pre-processing is carried out in the

same way as it was done in solving the problem of
identifying a direct multi-mode model of the aircraft
engine TV3-117. In the process of experimental research
as the main architectures of neural networks, for the
solution of this problem, perceptron and RBF were
investigated [12, 13].

The architecture of the neural network RBF for
solving the problem of identifying the reverse multi-mode
model of the aircraft engine TV3-117 is shown in fig. 3.

Experimental studies on the selection of optimal
structures of neural networks RBF and perceptron showed
that the optimal complexity of neural networks should
have respectively 12 and 16 neurons in the hidden layer
(fig. 4, curve 1) and (fig. 4, curve 2).
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Thus, the structure of 8-12-1 is optimal for the
complexity of the structure of the neural network RBF for
solving the inverse problem of identification of the
multimode model of the aircraft engine TV3-117; and for
the perceptron — the structure 8-16-1. Activation
functions of neurons were taken sigmoid, i.e.

\
\

i
I\

.

NN
NN

Nl

/

s )
TZ:p 2 7
T g
R, N\ </
N
N

Fig. 3. Reverse multi-mode model of aviation engine TV3-117 based
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f(s)= % . The analysis of the effectiveness of various
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algorithms for training the neural network, described in

detail in [14, 15], where the choice of the most optimal —

additive step of training the neural network, which is

realized in the form of a gradient method, is substantiated.

on neural network RBF
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Fig. 4. The choice of the optimal complexity of neural network struct
1 — perceptron; 2 — RBF

_depending on the number of neurons in the hidden layer
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ures for solving the inverse identification problem:
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component of the obstacle (white noise with zero
mathematical expectation M = 0 and ¢ = 0.01, fig. 6).
Curves on fig. 5 and 6 correspond to the errors of
comparative analysis of the accuracy of the neural calculation of the reduced fuel consumption for
networks (perceptron and RBF) and the classical (LSM) the two classes of neural network models
methods of identifying the inverse multi-mode model of  (perceptron and RBF), as well as for the polynomial
the aviation engine TV3-117 on the test sample (fig. 5)  regression model of the 8th order received by
and on the same sample in the conditions of the additive  the LSM.

Results of the task solution

In the framework of the developed method, a
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Fig. 5. Results of research of neural network and classical methods of identification of the return multi-mode model of aircraft engine
TV3-117: 1 — least squares method; 2 — perceptron; 3 — RBF
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Fig. 6. Results of research of neural network and classical methods of identification of the reverse multi-mode model of aircraft
engine TV3-117 on a test sample in conditions of additive noise (white noise): 1 — least squares method; 2 — perceptron; 3 — RBF

Table 2. Comparative analysis of the accuracy of neural networks and classical methods of identification of the reverse multi-mode
model of aircraft engine TV3-117 (indirect measurement of fuel consumption)

Identification method Mean square error (no Absolute error (no Mean square error (with | Absolute error (with
noise) noise), % noise) noise), %
Least squares method 0.057 0.508 1.393 1.742
Perceptron 0.018 0.128 0.038 0.607
Radial-basic function 0.046 0.275 0.057 0.754
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The analysis of the obtained results shows that the
best performance is the perceptron neural network, which
allows for indirect measurements of fuel consumption
over a wide range of engine operation:

- without noise — with an error of not more than
0.128 %;

- with the presence of noise (¢ = 0,01) — with an
error of not more than 0.607 %.

Applying the least squares method
conditions allows you to get the error value:

- no noise — no more than 0.508 %;

- with the presence of noise — no more than 1.742 %.

Consequently, in solving the inverse problem of
identifying a multi-mode aircraft engine model TV3-117,
neural networks are more prone to disturbances of the
initial data than the classical methods, which in the
conditions of the obstacles give a great error of
identification.

in these

Conclusions

Obviously, the application of neural network
technologies in solving the problems of control,
diagnostics and forecasting of the parameters of the
technical condition of the aircraft engine TV3-117 is not
an end in itself. The use of neural networks should be
considered economically viable (that is, giving real
economic effect) only in those cases where existing
methods can not provide the desired quality of the
solution, that is, when there is evidence in favor of higher
efficiency of neural networks. Summarizing the above, we
can draw the following conclusions.

1. Application of the device of neural networks turns
out to be effective in solving a large range of tasks: the
identification of the mathematical model of the aircraft
engine TV3-117, diagnostics of the state, analysis of
trends, forecasting of parameters, etc. Although these
tasks usually belong to the class of difficultly formalizable
(poorly structured), neural networks are adequate and
effective in their solution.
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