Vladov, S. I.Владов, С. І.Kovtun, V.Sokurenko, V. V.Сокуренко, В. В.Muzychuk, O. M.Музичук, О. М.Vysotska, V.Serhii VladovValerii Sokurenko2024-10-142024The Helicopter Turboshaft Engine’s Reconfigured Dynamic Model for Functional Safety Estimation / Serhii Vladov, Viacheslav Kovtun, Valerii Sokurenko, Oleksandr Muzychuk, Victoria Vysotska // Electronics. – 2024. – Vol. 13, Issue 17. – Article 3477. – DOI : https://doi.org/10.3390/electronics13173477.Vladov, S.; Kovtun, V.; Sokurenko, V.; Muzychuk, O.; Vysotska, V. The Helicopter Turboshaft Engine’s Reconfigured Dynamic Model for Functional Safety Estimation. Electronics 2024, 13, 3477. https://doi.org/10.3390/electronics13173477.https://dspace.univd.edu.ua/handle/123456789/22686This research substantiates the necessity for developing and implementing structural reconfiguration methods for automatic control systems in the event of a parametric sensor failure to enhance the helicopter turboshaft engine’s overall reliability and safety. The research aim is the substantiation of the helicopter turboshaft engine’s mathematically reconfigured automatic control system in the event of the failure of a standard sensor, which will ensure the helicopter turboshaft engine’s stable operation under failure conditions, minimizing the impact on engine control and performance. A theorem was developed and proven concerning the reconfiguration of the helicopter turboshaft engine’s automatic control system structure, defining the system’s new mathematical form using nonlinear thermogas-dynamic parameters. A method was proposed to determine the values of these parameters that keep the reconfigured control system stable. This method uses numerical optimization to find the best thermogas-dynamic parameters to ensure system stability. Experimental results showed that for slow changes, using parameters from the previous step works best, while for fast changes, restarting is more effective due to significant differences in the system states. The accuracy of the proposed mathematical model for the reconfigured control system was confirmed through mean square error analysis (within 0.4% and 0.77% under white noise), regression analysis (with a determination coefficient of 0.986), and cross-validation (with a metric deviation from the maximum mean square error of 3.88%).У цьому дослідженні обґрунтовано необхідність розробки та впровадження методів структурної реконфігурації систем автоматичного керування при виході з ладу параметричного датчика для підвищення загальної надійності та безпеки турбовального двигуна вертольота.В работе обоснована необходимость разработки и внедрения методов структурной реконфигурации систем автоматического управления при отказе параметрического датчика для повышения общей надежности и безопасности вертолетного турбовального двигателя.enUkrainepublikatsii u WoShelicopter turboshaft enginesreconfigured automatic control systemthermogas-dynamic parametersmulticriteria optimization taskLyapunov functionoptimal Pareto setвертолітні турбовальні двигунипереналаштована система автоматичного керуваннятермогазодинамічні параметризадача багатокритеріальної оптимізаціїфункція Ляпуноваоптимальний набір ПаретоhelicopterThe Helicopter Turboshaft Engine's Reconfigured Dynamic Model for Functional Safety EstimationArticlehttps://doi.org/10.3390/ electronics13173477http://orcid.org/0000-0001-8009-5254https://orcid.org/0000-0001-8923-5639http://orcid.org/0000-0001-8367-2504https://orcid.org/0000-0001-6417-3689